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Introduction

Let K be a number field. Let Ag denote the
adele of K.

Let p : Gg — GL,(C) be a n-dimensional
continuous representation of the absoulte Galois
group Gy of K. Let L(p,s) be the (Artin) L-
series

L(p,s) = [[det(1 — p’*(Froby)(Nv) %)~ !

in s € C associated to p, where by pfv I mean
the representation of Gy/I, on the subspace
of the inertia I, invariants, Nv = #QOg /v,
and Froby is the arithmetic Frobenius at v.



A theorem of Brauer asserts: L(p, s) has mero-
morphic continuation to the whole of C (a
piece of “group theory”; actually the Brauer’s
theorem is the genesis of “potential auto-
morphy” by R.Taylor).

The Artin conjecture asserts: the L-series
L(p,s) has holomorphic continuation to s € C
except for a possible pole at s = 1.

If p = p1+ p2, L(p,s) = L(p1,5)L(p2,s); SO
we may assume p is irreducible.

A conjecture of Langlands (‘“Langlands pro-
gramme” ), known more commonly as the
strong Artin conjecture, predicts: there ex-
iIsts a cuspidal automorphic representation =
of GLp(Ag) such that L(p,s) = L(w,s).



It is well-known that the strong Artin conjec-
ture implies the Artin conjecture. As far as 1
know, D.Ramakrishnan wrote down a proof
(an exercise in complex analysis).

If n =1, this is the global class field theory: a
canonical bijection between Hecke characters
of A% (the “automorphic side”) and Galois
character (the “Galois side”) of G.



If n=2, let

projp: Gg — GL>(C) - PGLo(C) := GL,(C)/C*.

Then the image of projp is either dihedral,
tetrahedral (A4), octahedral (S4), or icosa-
hedral (As).

The dihedral case is due to Artin himself.
T he tetrahedral case, and the octahedral case
with K = Q, p odd, is due to Langlands ( “sol-
uble base change”). Tunnell treats the octa-
hedral case in general (still as a result of the
soluble base change trick).

Except some computational evidence (Buhler,
Frey, et al.), the icosahedral case was largely
intractable (Ag is not soluble)!



For brevity, I shall henceforth call a repres-
entation p icosahedral if the image of projp
IS A5.

If n =2, K is a totally real field, and p is
totally odd (i.e., the determinant of the im-
age of complex conjugation with respect to
every embedding of K into R is -1), then the
strong Artin conjecture predicts: there exists
a holomorphic cusp eigenform f over K such
that L(f,s) = L(p, s).

What about the “even” case? Well, this
amounts to finding Maass forms...



AUTOMORPHIC TWO-DIMENSIONAL GALQOIS
REPRESENTATIONS

Let K be a totally real field. Let f be a holo-
morphic (Hilbert) cusp eigenform over K and
w(f) denote the cuspidal automorphic repres-
entation of GL>(Ag) generated by f.

“fir—7w(f) =m— pg" is established by

the regular weight case: Carayol ([K : Q] odd,
or [K : Q] even and = is square-integrable at
some finite place); Wiles (the ordinary case);
Taylor ([K : Q] is even),

the parallel weight one case: Ragawski-Tunnell

the partial weight one case: Jarvis



In the following, when K is totally real, 1
will say “a (totally odd two-dimensional) p-
adic/mod p representation p of Gx is modu-

lar’ .

By this, in characteristic zero, I will mean
that there exists a holomorphic cusp eigen-
form f over K such that its associated Galois
representation py : Gg — GL>(L), where L =

Qp({an(f)}), is isomorphic to p.

In characteristic p, I shall mean that the semi-
simplification (i.e., the direct sum of the Jordan-
Holder constituents) of the reduction

pt:Gg — GL2(Op) - GLo(Op/mp) ~ GLo(ky)

of the “model” G — GL>(Oy) is isomorphic
to p.



THE STRONG ARTIN CONJECTURE FOR
ODD ICOSAHEDRAL REPRESENTATIONS

In 2001, Buzzard-Dickinson-Shepherd-Barron-
Taylor “On icosahedral Artin representations”
proved many new cases of the strong Artin
conjecture for odd icosahedral p : Gg — GL2(C).

Which was followed by Taylor “On icosahed-
ral Artin representations II'"", 2003.

These are based on Taylor's idea to “deduce”
results about weight 1 forms from results
about weight 2 forms, i.e., Wiles's idea about
modularity of semi-stable elliptic curves over

Q.



More precisely,

(0) Fix an isomorphism C ~ @p for some p.
Let

p . GQ — GLQ(OL)
for a finite extension L of Qp, and let
p . GQ — GLQ(.ZCL)

be the “reduction mod p” of p.

(1) Prove that p : Gg — GL2(kr) is mod-
ular. This is commonly known as “Serre’s
conjecture for p.

(2) Prove that p modular implies p modular.
This, on the other hand, is known as Modular
Lifting Theorem, or R ="T.

(3) Combine (1) and (2) together, p is mod-
ular.



This is how Wiles proved an semistable el-
liptic curve over QQ is modular when p is the
Tate module pg : Gg — GL(E(Q,)[p™]) =~
GLo(Zp).

(1) is given by “Langlands-Tunnell” with p =
3,
pE 3 Gg = GL(E(Q)[3]) ~ GL(F3)
followed by an explicit homomorphism
GLo(F3) = GLo(Z(vV—2)) C GL>(C)

is odd, irreducible, and soluble (PGL»(F3) ~
S4). The composition is “modular” and there-
fore pp 3 is modular.
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(2) is given by "R = T"; Wiles proves that,
for any p, if pis a mod p representation p :
Gg — GL»(Fp), which is modular and whose

restriction to Gal(@/@(\/(—l)(p_l)/zp)) is ab-
solutely irreducible, then

the set R of all deformations (flat at p) of p
is isomorphic to

the set T of all deformations of p arising from
(in the sense of Eichler-Shimura(-Deligne))
weight 2 cusp forms.

In particular, for p either 3 or 5, pg : Gg —
GLy(Zp) associated to a semistable elliptic
curve E over Q gives a Zp-valued point of
Spec R, so it gives rises to a Zp-valued point
of SpecT’, hence pg is modular.
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Taylor's idea (1992) (for tackling the strong
Artin conjecture in the icosahedral case) was
to use this trick to prove modularity of odd
icosahedral p: Gg — GL2(Op,).

Slightly more precisely,

prove (2) that, given a p-adic representation

p . GQ — GLQ(OL)

whose *p-adic Hodge-Tate weights* are equal,
and its p : Gg — GL2(kr) is modular, then
p arises from a weight one form (which is
much stronger than modularity of icosahed-
ral p that we will need);

and prove (1) that odd icosahedral p: Gg —
GL>(ky) is modular.
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Results about modularity of mod p icosahed-
ral representations of GQ.

Shepherd-Barron-Taylor (2001) If p : Gg —
GL->(F4) is unramified at 3 and 5, then p is
modular.

The theorem is, in fact, pre-Shimura-Taniyama
(Breuil-Conrad-Diamond-Taylor). After S-
T, the condition at 3 can be suppressed.

If p is unramifed at 2 and 5, and p(Frobs)
has distinct eigenvalues, then p is modular.

Taylor (2003) If p : Gg — GL»(Fs) is “I3-

distinguished” and “5-distinguished”, then p
IS modular.
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Of course,

Khare-Wintenberger (2009) Any odd, con-
tinuous, and irreducible p is modular ( “Serre’s
conjecture™).

However, if projp is icosahedral, so is projp;
and since only PSL»>(Fg) and PSL»(IF4) are
isomorphic to Ag, it would suffices to know
modularity of p for p = 2, 5.
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Results about MLTSs.

Buzzard-Taylor (1999) For any odd p (p =2
works if combined with Dickinson’'s “R =T
theorem™) p : Gg — GL(Op) arises from a
weight one form if p : Gg — GL>(Oyp) is un-
ramified at p, p(Frobp) has distinct eigenval-
ues, and p is modular.

Buzzard (2003) For any p, p: Gg — GL2(Op)
arises from a weight one form if p is “poten-
tially unramified at p” (i.e., p(Ip) is finite),
p|Gp is the direct sum of two characters of
Gp which are distinct mod p, and p is modu-
lar.

Khare (1997) p : Gg — GL»(C) arises from
a weight one form if pp : Gg — GL2(Zp) C
GL>(Qp) ~ GL(C), when reduced mod p, is
modular for many p (“Serre” implies “Artin’").
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Me? Well, I can do a little better, and prove
many new cases of the strong Artin conjec-
ture for totally odd representations

p . GF — GLQ((C)

of the absolute Galois group G of a totally
real field F.

Remark. It does not seem possible to gener-
alise Khare-Wintenberger (while straightfor-
ward to check Khare's “Serre” = “Artin” in
the Hilbert case); and “Serre” + (“Serre" =
“Artin" ) to prove the strong Artin conjecture
IS probably not a good idea.
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Theorem 1 (S, 2010) Let F be a totally real
field. Assume that 5 splits completely in F'.
Let p: G — GL>(C) be a continuous, totally
odd, and icosahedral representation of Gp =
Gal(F2'9/F).

Suppose that, for every place v|5, the pro-
Jjective image of the decomposition group Gy
has order 2 and the corresponding quadratic
extension in F2'9 of F, is not Qg(V/5).

T hen the strong Artin conjecture for p holds.

Remark. Instead of the conditions above, 1
can prove the strong Artin conjecture assum-
ing 2 splits completely in F (and slightly dif-
ferent condition at 2).

Remark. In fact, I can even do this for the
totally ramified case...
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Remark. And I have absolutely no idea how
to remove the condition at 5.
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Theorem 2 (S, 2010) Let F be a totally real
field. Suppose that a prime p is unramified
in F. Let L be a finite extension of Q, with
maximal ideal my,. Let p: Gp — GL>(Op) be
a representation of Gg which

(1) ramifies at only finite many places of F,

(2) the restriction to GF(Cp) of p = (p mod my)
s absolutely irreducible and p arises from a
Hilbert modular form;

(3) for any vl|p, p is “nearly ordinary at v",
i.e., the restriction p|g, to the decomposition
group Gy is of the form

Oy *

such that

(3-1) awly, and By, are finite when restricted
to the inertia group at v,

and
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(3—2) (OAU mod mL) # (ﬁv mod mL).

Then there exists an overconvergent Hilbert
modular form of weight 1 and the twist of its
associated Galois representation is p.

In particular, if one furthermore assumes
(1) p splits completely in F
and

(2) p is split at all v
isable,

p, i.e., p|g, Is diagonal-

then p arises from a Hilbert modular form f
of weight 1, and there exists an embedding
Q{a(n, f)}) — L and, when followed by any
embedding of L into C, the strong Artin con-
Jecture holds.



So the part (2) is settled. How about (1)7
Well, this is the part I'd like to talk to you
about today.

Theorem 3 (S, 2011) Let F be a totally real
field. Assume that F' is linearly disjoint from
Q(v/5) (e.g. 5 is unramified in F). Let 5 :
Gr — GL>(Fs) be a continuous and totally
odd representation of Ggp. Suppose that

(1) p has projective image As,

(2) the projective image of the decomposi-
tion group G, for every v|5 has order 2, and
the quadratic extension of F, corresponding
to the projective image is not Fy(\/5).

Then p is modular.
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Proof.

"POTENTIALLY"” LIFTINGICOSAHEDRAL
REPRESENTATIONS

Find a totally real soluble extension Fy; of F
such that p; = ﬁ|GF1 . G, — GL>(Fs) has
determinant the cyclotomic character.

So p; “looks like” it arises from an elliptic
curve.

To do this, observe that the obstruction for
lifting p : Gp — Ag ~ PSL»(Fgs) to a homo-
morphism G — SLo(Fs) lies in H2(Gp, {£1}).

Since
H?(Gp,{£1}) = @ H?(GF,, {£1}),

choose (by CFT) a bi-quadratic totally real
extension Fy of F' in which the finite places
v in F where the local obstructions are non-
trivial, do not split completely.
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At the infinite places, the local obstructions
remain non-trivial.

On the other hand, the obstruction for lift-
ing Gp — {£1} to a character G /) — Fg
with square mod 5 cyclotomic character lies
in H2(Gp,{£1}), and non-trivial exactly at
the infinite places.

T he obstructions for the two lifting problems
(which are exactly at the infinite places) can-
cel out each other!



A MODULI SPACE OF MOTIVES

Let F> be the Galois closure over Q of an
extension of Fy in which /5 splits completely.

Find an elliptic curve E over a finite soluble
extension F> of Fy such that

(1) 3 : Gp, = GL(E[3]) =~ GL(F3) is sur-
jective;

2) o IS absolutely irreducible
(2) PE3sley, (= y

(3) E has (potentially) good ordinary reduc-
tion at every v|5

(4) PEs : Gp, — GL(E[5]) ~ GL(Fs) is iso-
morphic to py, = p1|GF2 (up to twist by a
character).

To do this, consider a moduli space YﬁQ of
elliptic curves over F> whose 5-torsions are
isomorphic to p>. There are infinitely many
F>-rational points. Find a F>-point of Y3,
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corresponding to an elliptic curve over F5
which has (potentially) good ordinary reduc-
tion at every v|5. Then there is a F>-point,
which is close (for the 5-adic topology) to the
point and which is not in the image (finite
many points) of the F>-points of Y5, 9(3) =
{(E,C)}/ ~ nor in the image (finitely many
points) of F>-points of Y, ¢piit(3) = {(&,{C,D})}/ ~.



POTENTIAL AUTOMORPHY

By Langlands-Tunnell, E[3] is modular by (1).
It follows from Kisin’'s MLT (p = 3), pg3 is
modular (see (2)). By Falting’s isogeny the-
orem, FE is modular. In particular, PE.5 IS
modular and therefore, by (3), p> is mod-
ular. By a generalisation of Taylor’'s argu-
ment in “Artin II", there is a lifting p: Gp —
GL>(Zsg) of p such that p|GF2 is a lifting of p».
By Skinner-Wiles (p = 5), p|GF2 is modular.
Since F5 is a totally real soluble extension of
F', by decent, p is modular. In which case p
is modular. [
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