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Introduction

Let K be a number field. Let AK denote the

adele of K.

Let ρ : GK → GLn(C) be a n-dimensional

continuous representation of the absoulte Galois

group GK of K. Let L(ρ, s) be the (Artin) L-

series

L(ρ, s) =
∏

v
det(1− ρIv(Frobv)(Nv)−s)−1

in s ∈ C associated to ρ, where by ρIv I mean

the representation of Gv/Iv on the subspace

of the inertia Iv invariants, Nv = #OK/v,

and Frobv is the arithmetic Frobenius at v.
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A theorem of Brauer asserts: L(ρ, s) has mero-

morphic continuation to the whole of C (a

piece of “group theory”; actually the Brauer’s

theorem is the genesis of “potential auto-

morphy” by R.Taylor).

The Artin conjecture asserts: the L-series

L(ρ, s) has holomorphic continuation to s ∈ C
except for a possible pole at s = 1.

If ρ = ρ1 + ρ2, L(ρ, s) = L(ρ1, s)L(ρ2, s); so

we may assume ρ is irreducible.

A conjecture of Langlands (“Langlands pro-

gramme”), known more commonly as the

strong Artin conjecture, predicts: there ex-

ists a cuspidal automorphic representation π

of GLn(AK) such that L(ρ, s) = L(π, s).
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It is well-known that the strong Artin conjec-

ture implies the Artin conjecture. As far as I

know, D.Ramakrishnan wrote down a proof

(an exercise in complex analysis).

If n = 1, this is the global class field theory: a

canonical bijection between Hecke characters

of A×K (the “automorphic side”) and Galois

character (the “Galois side”) of GK.
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If n = 2, let

proj ρ : GK → GL2(C)� PGL2(C) := GL2(C)/C
×.

Then the image of proj ρ is either dihedral,

tetrahedral (A4), octahedral (S4), or icosa-

hedral (A5).

The dihedral case is due to Artin himself.

The tetrahedral case, and the octahedral case

with K = Q, ρ odd, is due to Langlands (“sol-
uble base change”). Tunnell treats the octa-

hedral case in general (still as a result of the

soluble base change trick).

Except some computational evidence (Buhler,

Frey, et al.), the icosahedral case was largely

intractable (A5 is not soluble)!

4



For brevity, I shall henceforth call a repres-

entation ρ icosahedral if the image of proj ρ

is A5.

If n = 2, K is a totally real field, and ρ is

totally odd (i.e., the determinant of the im-

age of complex conjugation with respect to

every embedding of K into R is -1), then the
strong Artin conjecture predicts: there exists

a holomorphic cusp eigenform f over K such

that L(f, s) = L(ρ, s).

What about the “even” case? Well, this

amounts to finding Maass forms...
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AUTOMORPHIC TWO-DIMENSIONAL GALOIS

REPRESENTATIONS

Let K be a totally real field. Let f be a holo-

morphic (Hilbert) cusp eigenform over K and

π(f) denote the cuspidal automorphic repres-

entation of GL2(AK) generated by f .

“f 7→ π(f) = π 7→ ρπ” is established by

the regular weight case: Carayol ([K : Q] odd,
or [K : Q] even and π is square-integrable at
some finite place); Wiles (the ordinary case);

Taylor ([K : Q] is even),

the parallel weight one case: Ragawski-Tunnell

the partial weight one case: Jarvis
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In the following, when K is totally real, I

will say “a (totally odd two-dimensional) p-

adic/mod p representation ρ of GK is modu-

lar”.

By this, in characteristic zero, I will mean

that there exists a holomorphic cusp eigen-

form f over K such that its associated Galois

representation ρf : GK → GL2(L), where L =

Qp({an(f)}), is isomorphic to ρ.

In characteristic p, I shall mean that the semi-

simplification (i.e., the direct sum of the Jordan-

Holder constituents) of the reduction

ρf : GK → GL2(OL)� GL2(OL/mL) ' GL2(kL)

of the “model” GK → GL2(OL) is isomorphic

to ρ.
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THE STRONG ARTIN CONJECTURE FOR

ODD ICOSAHEDRAL REPRESENTATIONS

In 2001, Buzzard-Dickinson-Shepherd-Barron-

Taylor “On icosahedral Artin representations”

proved many new cases of the strong Artin

conjecture for odd icosahedral ρ : GQ → GL2(C).

Which was followed by Taylor “On icosahed-

ral Artin representations II”, 2003.

These are based on Taylor’s idea to “deduce”

results about weight 1 forms from results

about weight 2 forms, i.e., Wiles’s idea about

modularity of semi-stable elliptic curves over

Q.
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More precisely,

(0) Fix an isomorphism C ' Qp for some p.
Let

ρ : GQ → GL2(OL)

for a finite extension L of Qp, and let

ρ : GQ → GL2(kL)

be the “reduction mod p” of ρ.

(1) Prove that ρ : GQ → GL2(kL) is mod-

ular. This is commonly known as “Serre’s

conjecture for ρ.

(2) Prove that ρ modular implies ρ modular.

This, on the other hand, is known as Modular

Lifting Theorem, or R = T .

(3) Combine (1) and (2) together, ρ is mod-

ular.
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This is how Wiles proved an semistable el-

liptic curve over Q is modular when ρ is the

Tate module ρE : GQ → GL(E(Qp)[p∞]) '
GL2(Zp).

(1) is given by “Langlands-Tunnell” with p =

3;

ρE,3 : GQ → GL(E(Q)[3]) ' GL2(F3)

followed by an explicit homomorphism

GL2(F3)→ GL2(Z(
√
−2)) ⊂ GL2(C)

is odd, irreducible, and soluble (PGL2(F3) '
S4). The composition is “modular” and there-

fore ρE,3 is modular.
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(2) is given by “R = T”; Wiles proves that,

for any p, if ρ is a mod p representation ρ :

GQ → GL2(Fp), which is modular and whose

restriction to Gal(Q/Q(
√
(−1)(p−1)/2p)) is ab-

solutely irreducible, then

the set R of all deformations (flat at p) of ρ

is isomorphic to

the set T of all deformations of ρ arising from

(in the sense of Eichler-Shimura(-Deligne))

weight 2 cusp forms.

In particular, for p either 3 or 5, ρE : GQ →

GL2(Zp) associated to a semistable elliptic

curve E over Q gives a Zp-valued point of

SpecR, so it gives rises to a Zp-valued point
of SpecT , hence ρE is modular.
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Taylor’s idea (1992) (for tackling the strong

Artin conjecture in the icosahedral case) was

to use this trick to prove modularity of odd

icosahedral ρ : GQ → GL2(OL).

Slightly more precisely,

prove (2) that, given a p-adic representation

ρ : GQ → GL2(OL)

whose *p-adic Hodge-Tate weights* are equal,

and its ρ : GQ → GL2(kL) is modular, then

ρ arises from a weight one form (which is

much stronger than modularity of icosahed-

ral ρ that we will need);

and prove (1) that odd icosahedral ρ : GQ →

GL2(kL) is modular.
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Results about modularity of mod p icosahed-

ral representations of GQ.

Shepherd-Barron-Taylor (2001) If ρ : GQ →

GL2(F4) is unramified at 3 and 5, then ρ is
modular.

The theorem is, in fact, pre-Shimura-Taniyama

(Breuil-Conrad-Diamond-Taylor). After S-

T, the condition at 3 can be suppressed.

If ρ is unramifed at 2 and 5, and ρ(Frob2)

has distinct eigenvalues, then ρ is modular.

Taylor (2003) If ρ : GQ → GL2(F5) is “I3-
distinguished” and “5-distinguished”, then ρ

is modular.
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Of course,

Khare-Wintenberger (2009) Any odd, con-

tinuous, and irreducible ρ is modular (“Serre’s

conjecture”).

However, if proj ρ is icosahedral, so is proj ρ;

and since only PSL2(F5) and PSL2(F4) are
isomorphic to A5, it would suffices to know

modularity of ρ for p = 2,5.
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Results about MLTs.

Buzzard-Taylor (1999) For any odd p (p = 2

works if combined with Dickinson’s “R = T

theorem”) ρ : GQ → GL2(OL) arises from a

weight one form if ρ : GQ → GL2(OL) is un-

ramified at p, ρ(Frobp) has distinct eigenval-

ues, and ρ is modular.

Buzzard (2003) For any p, ρ : GQ → GL2(OL)

arises from a weight one form if ρ is “poten-

tially unramified at p” (i.e., ρ(Ip) is finite),

ρ|Gp is the direct sum of two characters of

Gp which are distinct mod p, and ρ is modu-

lar.

Khare (1997) ρ : GQ → GL2(C) arises from
a weight one form if ρp : GQ → GL2(Zp) ⊂
GL2(Qp) ' GL2(C), when reduced mod p, is
modular formany p (“Serre” implies “Artin”).
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Me? Well, I can do a little better, and prove

many new cases of the strong Artin conjec-

ture for totally odd representations

ρ : GF → GL2(C)

of the absolute Galois group GF of a totally

real field F .

Remark. It does not seem possible to gener-

alise Khare-Wintenberger (while straightfor-

ward to check Khare’s “Serre” ⇒ “Artin” in

the Hilbert case); and “Serre” + (“Serre”⇒

“Artin”) to prove the strong Artin conjecture

is probably not a good idea.
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Theorem 1 (S, 2010) Let F be a totally real

field. Assume that 5 splits completely in F .

Let ρ : GF → GL2(C) be a continuous, totally
odd, and icosahedral representation of GF =

Gal(F alg/F ).

Suppose that, for every place v|5, the pro-

jective image of the decomposition group Gv

has order 2 and the corresponding quadratic

extension in F algv of Fv is not Q5(
√
5).

Then the strong Artin conjecture for ρ holds.

Remark. Instead of the conditions above, I

can prove the strong Artin conjecture assum-

ing 2 splits completely in F (and slightly dif-

ferent condition at 2).

Remark. In fact, I can even do this for the

totally ramified case...
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Remark. And I have absolutely no idea how

to remove the condition at 5.
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Theorem 2 (S, 2010) Let F be a totally real

field. Suppose that a prime p is unramified

in F . Let L be a finite extension of Qp with
maximal ideal mL. Let ρ : GF → GL2(OL) be

a representation of GF which

(1) ramifies at only finite many places of F ;

(2) the restriction to GF (ζp) of ρ = (ρmod mL)

is absolutely irreducible and ρ arises from a

Hilbert modular form;

(3) for any v|p, ρ is “nearly ordinary at v”,

i.e., the restriction ρ|Gv to the decomposition

group Gv is of the form

ρ|Gv '

(
αv ∗
0 βv

)

such that

(3-1) αv|Iv and βv|Iv are finite when restricted

to the inertia group at v,

and
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(3-2) (αv mod mL) 6= (βv mod mL).

Then there exists an overconvergent Hilbert

modular form of weight 1 and the twist of its

associated Galois representation is ρ.

In particular, if one furthermore assumes

(1) p splits completely in F

and

(2) ρ is split at all v|p, i.e., ρ|Gv is diagonal-

isable,

then ρ arises from a Hilbert modular form f

of weight 1, and there exists an embedding

Q({a(n, f)}) ↪→ L and, when followed by any
embedding of L into C, the strong Artin con-
jecture holds.



So the part (2) is settled. How about (1)?

Well, this is the part I’d like to talk to you

about today.

Theorem 3 (S, 2011) Let F be a totally real

field. Assume that F is linearly disjoint from

Q(
√
5) (e.g. 5 is unramified in F ). Let ρ :

GF → GL2(F5) be a continuous and totally

odd representation of GF . Suppose that

(1) ρ has projective image A5;

(2) the projective image of the decomposi-

tion group Gv for every v|5 has order 2, and

the quadratic extension of Fv corresponding

to the projective image is not Fv(
√
5).

Then ρ is modular.
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Proof.

“POTENTIALLY” LIFTING ICOSAHEDRAL

REPRESENTATIONS

Find a totally real soluble extension F1 of F

such that ρ1 := ρ|GF1
: GF1 → GL2(F5) has

determinant the cyclotomic character.

So ρ1 “looks like” it arises from an elliptic

curve.

To do this, observe that the obstruction for

lifting ρ : GF → A5 ' PSL2(F5) to a homo-
morphism GF → SL2(F5) lies in H2(GF , {±1}).

Since

H2(GF , {±1})
res−→

⊕

v
H2(GFv, {±1}),

choose (by CFT) a bi-quadratic totally real

extension F1 of F in which the finite places

v in F where the local obstructions are non-

trivial, do not split completely.
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At the infinite places, the local obstructions

remain non-trivial.

On the other hand, the obstruction for lift-

ing GF → {±1} to a character GF (
√
5)
→ F×5

with square mod 5 cyclotomic character lies

in H2(GF , {±1}), and non-trivial exactly at

the infinite places.

The obstructions for the two lifting problems

(which are exactly at the infinite places) can-

cel out each other!



A MODULI SPACE OF MOTIVES

Let F2 be the Galois closure over Q of an

extension of F1 in which
√
5 splits completely.

Find an elliptic curve E over a finite soluble

extension F2 of F1 such that

(1) ρE,3 : GF2 → GL(E[3]) ' GL2(F3) is sur-
jective;

(2) ρE,3|GF2(
√
−3)

is absolutely irreducible

(3) E has (potentially) good ordinary reduc-

tion at every v|5

(4) ρE,5 : GF2 → GL(E[5]) ' GL2(F5) is iso-
morphic to ρ2 := ρ1|GF2

(up to twist by a

character).

To do this, consider a moduli space Yρ2 of

elliptic curves over F2 whose 5-torsions are

isomorphic to ρ2. There are infinitely many

F2-rational points. Find a F2-point of Yρ2
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corresponding to an elliptic curve over F2
which has (potentially) good ordinary reduc-

tion at every v|5. Then there is a F2-point,

which is close (for the 5-adic topology) to the

point and which is not in the image (finite

many points) of the F2-points of Yρ2,0(3) =

{(E,C)}/ ' nor in the image (finitely many

points) of F2-points of Yρ2,split(3) = {(E, {C,D})}/ '.



POTENTIAL AUTOMORPHY

By Langlands-Tunnell, E[3] is modular by (1).

It follows from Kisin’s MLT (p = 3), ρE,3 is

modular (see (2)). By Falting’s isogeny the-

orem, E is modular. In particular, ρE,5 is

modular and therefore, by (3), ρ2 is mod-

ular. By a generalisation of Taylor’s argu-

ment in “Artin II”, there is a lifting ρ : GF →

GL2(Z5) of ρ such that ρ|GF2
is a lifting of ρ2.

By Skinner-Wiles (p = 5), ρ|GF2
is modular.

Since F2 is a totally real soluble extension of

F , by decent, ρ is modular. In which case ρ

is modular. �
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