Mod 5 icosahedral representations and a conjecture of Artin

Shu Sasaki

27th May 2011

Introduction

Let K be a number field. Let \mathbb{A}_K denote the adele of K.

Let $\rho: G_K \to GL_n(\mathbb{C})$ be a n-dimensional continuous representation of the absoulte Galois group G_K of K. Let $L(\rho,s)$ be the (Artin) L-series

$$L(\rho,s) = \prod_{v} \det(1 - \rho^{I_v}(\mathsf{Frob}_v)(\mathbf{N}v)^{-s})^{-1}$$

in $s \in \mathbb{C}$ associated to ρ , where by ρ^{I_v} I mean the representation of G_v/I_v on the subspace of the inertia I_v invariants, $\mathbf{N}v = \#\mathcal{O}_K/v$, and Frob_v is the arithmetic Frobenius at v.

A theorem of Brauer asserts: $L(\rho, s)$ has meromorphic continuation to the whole of \mathbb{C} (a piece of "group theory"; actually the Brauer's theorem is the genesis of "potential automorphy" by R.Taylor).

The Artin conjecture asserts: the L-series $L(\rho,s)$ has holomorphic continuation to $s\in\mathbb{C}$ except for a possible pole at s=1.

If $\rho = \rho_1 + \rho_2$, $L(\rho, s) = L(\rho_1, s)L(\rho_2, s)$; so we may assume ρ is irreducible.

A conjecture of Langlands ("Langlands programme"), known more commonly as the strong Artin conjecture, predicts: there exists a cuspidal automorphic representation π of $GL_n(\mathbb{A}_K)$ such that $L(\rho,s)=L(\pi,s)$.

It is well-known that the strong Artin conjecture implies the Artin conjecture. As far as I know, D.Ramakrishnan wrote down a proof (an exercise in complex analysis).

If n=1, this is the global class field theory: a canonical bijection between Hecke characters of \mathbb{A}_K^{\times} (the "automorphic side") and Galois character (the "Galois side") of G_K .

If n = 2, let

$$\operatorname{proj} \rho : G_K \to GL_2(\mathbb{C}) \twoheadrightarrow PGL_2(\mathbb{C}) := GL_2(\mathbb{C})/\mathbb{C}^{\times}.$$

Then the image of proj ρ is either dihedral, tetrahedral (A_4) , octahedral (S_4) , or icosahedral (A_5) .

The dihedral case is due to Artin himself. The tetrahedral case, and the octahedral case with $K=\mathbb{Q}$, ρ odd, is due to Langlands ("soluble base change"). Tunnell treats the octahedral case in general (still as a result of the soluble base change trick).

Except some computational evidence (Buhler, Frey, et al.), the icosahedral case was largely intractable (A_5 is not soluble)!

For brevity, I shall henceforth call a representation ρ icosahedral if the image of proj ρ is A_5 .

If n=2, K is a totally real field, and ρ is totally odd (i.e., the determinant of the image of complex conjugation with respect to every embedding of K into \mathbb{R} is -1), then the strong Artin conjecture predicts: there exists a holomorphic cusp eigenform f over K such that $L(f,s)=L(\rho,s)$.

What about the "even" case? Well, this amounts to finding Maass forms...

AUTOMORPHIC TWO-DIMENSIONAL GALOIS REPRESENTATIONS

Let K be a totally real field. Let f be a holomorphic (Hilbert) cusp eigenform over K and $\pi(f)$ denote the cuspidal automorphic representation of $GL_2(\mathbb{A}_K)$ generated by f.

"
$$f \mapsto \pi(f) = \pi \mapsto \rho_{\pi}$$
" is established by

the regular weight case: Carayol ($[K : \mathbb{Q}]$ odd, or $[K : \mathbb{Q}]$ even and π is square-integrable at some finite place); Wiles (the ordinary case); Taylor ($[K : \mathbb{Q}]$ is even),

the parallel weight one case: Ragawski-Tunnell

the partial weight one case: Jarvis

In the following, when K is totally real, I will say "a (totally odd two-dimensional) p-adic/mod p representation ρ of G_K is modular".

By this, in characteristic zero, I will mean that there exists a holomorphic cusp eigenform f over K such that its associated Galois representation $\rho_f: G_K \to GL_2(L)$, where $L = \mathbb{Q}_p(\{a_{\mathfrak{n}}(f)\})$, is isomorphic to ρ .

In characteristic p, I shall mean that the semisimplification (i.e., the direct sum of the Jordan-Holder constituents) of the reduction

 $\overline{
ho}_f:G_K o GL_2(\mathcal{O}_L) widtharpoonup GL_2(\mathcal{O}_L/\mathfrak{m}_L)\simeq GL_2(k_L)$ of the "model" $G_K o GL_2(\mathcal{O}_L)$ is isomorphic to ρ .

THE STRONG ARTIN CONJECTURE FOR ODD ICOSAHEDRAL REPRESENTATIONS

In 2001, Buzzard-Dickinson-Shepherd-Barron-Taylor "On icosahedral Artin representations" proved many new cases of the strong Artin conjecture for odd icosahedral $\rho: G_{\mathbb{Q}} \to GL_2(\mathbb{C})$.

Which was followed by Taylor "On icosahed-ral Artin representations II", 2003.

These are based on Taylor's idea to "deduce" results about weight 1 forms from results about weight 2 forms, i.e., Wiles's idea about modularity of semi-stable elliptic curves over \mathbb{Q} .

More precisely,

(0) Fix an isomorphism $\mathbb{C}\simeq\overline{\mathbb{Q}}_p$ for some p. Let

$$\rho: G_{\mathbb{Q}} \to GL_2(\mathcal{O}_L)$$

for a finite extension L of \mathbb{Q}_p , and let

$$\overline{\rho}: G_{\mathbb{Q}} \to GL_2(k_L)$$

be the "reduction mod p" of ρ .

- (1) Prove that $\overline{\rho}: G_{\mathbb{Q}} \to GL_2(k_L)$ is modular. This is commonly known as "Serre's conjecture for $\overline{\rho}$.
- (2) Prove that $\overline{\rho}$ modular implies ρ modular. This, on the other hand, is known as Modular Lifting Theorem, or R = T.
- (3) Combine (1) and (2) together, ρ is modular.

This is how Wiles proved an semistable elliptic curve over $\mathbb Q$ is modular when ρ is the Tate module $\rho_E:G_{\mathbb Q}\to GL(E(\overline{\mathbb Q}_p)[p^\infty])\simeq GL_2(\mathbb Z_p).$

(1) is given by "Langlands-Tunnell" with p=3;

$$\overline{\rho}_{E,3}: G_{\mathbb{Q}} \to GL(E(\overline{\mathbb{Q}})[3]) \simeq GL_2(\mathbb{F}_3)$$

followed by an explicit homomorphism

$$GL_2(\mathbb{F}_3) \to GL_2(\mathbb{Z}(\sqrt{-2})) \subset GL_2(\mathbb{C})$$

is odd, irreducible, and soluble $(PGL_2(\mathbb{F}_3) \simeq S_4)$. The composition is "modular" and therefore $\overline{\rho}_{E,3}$ is modular.

(2) is given by "R=T"; Wiles proves that, for any p, if \overline{p} is a mod p representation \overline{p} : $G_{\mathbb{Q}} \to GL_2(\mathbb{F}_p)$, which is modular and whose restriction to $\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(\sqrt{(-1)^{(p-1)/2}p}))$ is absolutely irreducible, then

the set R of all deformations (flat at p) of \overline{p} is isomorphic to

the set T of all deformations of $\overline{\rho}$ arising from (in the sense of Eichler-Shimura(-Deligne)) weight 2 cusp forms.

In particular, for p either 3 or 5, $\rho_E: G_{\mathbb{Q}} \to GL_2(\mathbb{Z}_p)$ associated to a semistable elliptic curve E over \mathbb{Q} gives a \mathbb{Z}_p -valued point of Spec R, so it gives rises to a \mathbb{Z}_p -valued point of Spec T, hence ρ_E is modular.

Taylor's idea (1992) (for tackling the strong Artin conjecture in the icosahedral case) was to use this trick to prove modularity of odd icosahedral $\rho: G_{\mathbb{Q}} \to GL_2(\mathcal{O}_L)$.

Slightly more precisely,

prove (2) that, given a p-adic representation

$$\rho: G_{\mathbb{Q}} \to GL_2(\mathcal{O}_L)$$

whose *p-adic Hodge-Tate weights* are equal, and its $\overline{\rho}: G_{\mathbb{Q}} \to GL_2(k_L)$ is modular, then ρ arises from a weight one form (which is much stronger than modularity of icosahedral ρ that we will need);

and prove (1) that odd icosahedral $\overline{\rho}:G_{\mathbb{Q}}\to GL_2(k_L)$ is modular.

Results about modularity of mod p icosahedral representations of $G_{\mathbb{Q}}$.

Shepherd-Barron-Taylor (2001) If $\overline{\rho}:G_{\mathbb{Q}}\to GL_2(\mathbb{F}_4)$ is unramified at 3 and 5, then $\overline{\rho}$ is modular.

The theorem is, in fact, pre-Shimura-Taniyama (Breuil-Conrad-Diamond-Taylor). After S-T, the condition at 3 can be suppressed.

If $\overline{\rho}$ is unramifed at 2 and 5, and $\overline{\rho}(\operatorname{Frob}_2)$ has distinct eigenvalues, then $\overline{\rho}$ is modular.

Taylor (2003) If $\overline{\rho}:G_{\mathbb{Q}}\to GL_2(\mathbb{F}_5)$ is " I_3 -distinguished" and "5-distinguished", then $\overline{\rho}$ is modular.

Of course,

Khare-Wintenberger (2009) Any odd, continuous, and irreducible \bar{p} is modular ("Serre's conjecture").

However, if $\operatorname{proj} \rho$ is icosahedral, so is $\operatorname{proj} \overline{\rho}$; and since only $PSL_2(\mathbb{F}_5)$ and $PSL_2(\mathbb{F}_4)$ are isomorphic to A_5 , it would suffices to know modularity of $\overline{\rho}$ for p=2,5.

Results about MLTs.

Buzzard-Taylor (1999) For any odd p (p=2 works if combined with Dickinson's "R=T theorem") $\rho: G_{\mathbb{Q}} \to GL_2(\mathcal{O}_L)$ arises from a weight one form if $\rho: G_{\mathbb{Q}} \to GL_2(\mathcal{O}_L)$ is unramified at p, $\rho(\operatorname{Frob}_p)$ has distinct eigenvalues, and $\overline{\rho}$ is modular.

Buzzard (2003) For any p, $\rho:G_{\mathbb{Q}}\to GL_2(\mathcal{O}_L)$ arises from a weight one form if ρ is "potentially unramified at p" (i.e., $\rho(I_p)$ is finite), $\rho|_{G_p}$ is the direct sum of two characters of G_p which are distinct mod p, and $\overline{\rho}$ is modular.

Khare (1997) $\rho: G_{\mathbb{Q}} \to GL_2(\mathbb{C})$ arises from a weight one form if $\rho_p: G_{\mathbb{Q}} \to GL_2(\overline{\mathbb{Z}}_p) \subset GL_2(\overline{\mathbb{Q}}_p) \simeq GL_2(\mathbb{C})$, when reduced mod p, is modular for many p ("Serre" implies "Artin").

Me? Well, I can do a little better, and prove many new cases of the strong Artin conjecture for *totally odd* representations

$$\rho: G_F \to GL_2(\mathbb{C})$$

of the absolute Galois group G_F of a totally real field F.

Remark. It does not seem possible to generalise Khare-Wintenberger (while straightforward to check Khare's "Serre" \Rightarrow "Artin" in the Hilbert case); and "Serre" + ("Serre" \Rightarrow "Artin") to prove the strong Artin conjecture is probably not a good idea.

Theorem 1 (S, 2010) Let F be a totally real field. Assume that 5 splits completely in F. Let $\rho: G_F \to GL_2(\mathbb{C})$ be a continuous, totally odd, and icosahedral representation of $G_F = Gal(F^{alg}/F)$.

Suppose that, for every place v|5, the projective image of the decomposition group G_v has order 2 and the corresponding quadratic extension in F_v^{alg} of F_v is not $\mathbb{Q}_5(\sqrt{5})$.

Then the strong Artin conjecture for ρ holds.

Remark. Instead of the conditions above, I can prove the strong Artin conjecture assuming 2 splits completely in F (and slightly different condition at 2).

Remark. In fact, I can even do this for the totally ramified case...

Remark. And I have absolutely no idea how to remove the condition at 5.

Theorem 2 (S, 2010) Let F be a totally real field. Suppose that a prime p is unramified in F. Let L be a finite extension of \mathbb{Q}_p with maximal ideal \mathfrak{m}_L . Let $\rho: G_F \to GL_2(\mathcal{O}_L)$ be a representation of G_F which

- (1) ramifies at only finite many places of F;
- (2) the restriction to $G_{F(\zeta_p)}$ of $\overline{\rho} = (\rho \mod \mathfrak{m}_L)$ is absolutely irreducible and $\overline{\rho}$ arises from a Hilbert modular form;
- (3) for any v|p, ρ is "nearly ordinary at v", i.e., the restriction $\rho|_{G_v}$ to the decomposition group G_v is of the form

$$ho|_{G_v} \simeq \begin{pmatrix} lpha_v & * \ 0 & eta_v \end{pmatrix}$$

such that

(3-1) $\alpha_v|_{I_v}$ and $\beta_v|_{I_v}$ are finite when restricted to the inertia group at v,

and

(3-2) $(\alpha_v \mod \mathfrak{m}_L) \neq (\beta_v \mod \mathfrak{m}_L)$.

Then there exists an overconvergent Hilbert modular form of weight 1 and the twist of its associated Galois representation is ρ .

In particular, if one furthermore assumes

(1) p splits completely in F

and

(2) ρ is split at all v|p, i.e., $\rho|_{G_v}$ is diagonalisable,

then ρ arises from a Hilbert modular form f of weight 1, and there exists an embedding $\mathbb{Q}(\{a(\mathfrak{n},f)\}) \hookrightarrow L$ and, when followed by any embedding of L into \mathbb{C} , the strong Artin conjecture holds.

So the part (2) is settled. How about (1)? Well, this is the part I'd like to talk to you about today.

Theorem 3 (S, 2011) Let F be a totally real field. Assume that F is linearly disjoint from $\mathbb{Q}(\sqrt{5})$ (e.g. 5 is unramified in F). Let $\overline{\rho}$: $G_F \to GL_2(\overline{\mathbb{F}}_5)$ be a continuous and totally odd representation of G_F . Suppose that

- (1) $\overline{\rho}$ has projective image A_5 ;
- (2) the projective image of the decomposition group G_v for every v|5 has order 2, and the quadratic extension of F_v corresponding to the projective image is not $F_v(\sqrt{5})$.

Then $\overline{\rho}$ is modular.

Proof.

"POTENTIALLY" LIFTING ICOSAHEDRAL REPRESENTATIONS

Find a totally real soluble extension F_1 of F such that $\overline{\rho}_1:=\overline{\rho}|_{G_{F_1}}:G_{F_1}\to GL_2(\mathbb{F}_5)$ has determinant the cyclotomic character.

So $\overline{\rho}_1$ "looks like" it arises from an elliptic curve.

To do this, observe that the obstruction for lifting $\overline{\rho}: G_F \to A_5 \simeq PSL_2(\mathbb{F}_5)$ to a homomorphism $G_F \to SL_2(\mathbb{F}_5)$ lies in $H^2(G_F, \{\pm 1\})$.

Since

$$H^2(G_F, \{\pm 1\}) \xrightarrow{\mathsf{res}} \bigoplus_v H^2(G_{F_v}, \{\pm 1\}),$$

choose (by CFT) a bi-quadratic totally real extension F_1 of F in which the *finite* places v in F where the local obstructions are non-trivial, do *not* split completely.

At the infinite places, the local obstructions remain non-trivial.

On the other hand, the obstruction for lifting $G_F \to \{\pm 1\}$ to a character $G_{F(\sqrt{5})} \to \mathbb{F}_5^{\times}$ with square mod 5 cyclotomic character lies in $H^2(G_F, \{\pm 1\})$, and non-trivial exactly at the infinite places.

The obstructions for the two lifting problems (which are exactly at the infinite places) cancel out each other!

A MODULI SPACE OF MOTIVES

Let F_2 be the Galois closure over \mathbb{Q} of an extension of F_1 in which $\sqrt{5}$ splits completely.

Find an elliptic curve E over a finite soluble extension F_2 of F_1 such that

- (1) $\overline{\rho}_{E,3}:G_{F_2}\to GL(E[3])\simeq GL_2(\mathbb{F}_3)$ is surjective;
- (2) $\overline{
 ho}_{E,3}|_{G_{F_2(\sqrt{-3})}}$ is absolutely irreducible
- (3) E has (potentially) good ordinary reduction at every $v \mid 5$
- (4) $\overline{\rho}_{E,5}: G_{F_2} \to GL(E[5]) \simeq GL_2(\mathbb{F}_5)$ is isomorphic to $\overline{\rho}_2:=\overline{\rho}_1|_{G_{F_2}}$ (up to twist by a character).

To do this, consider a moduli space $Y_{\overline{\rho}_2}$ of elliptic curves over F_2 whose 5-torsions are isomorphic to $\overline{\rho}_2$. There are infinitely many F_2 -rational points. Find a F_2 -point of $Y_{\overline{\rho}_2}$

corresponding to an elliptic curve over F_2 which has (potentially) good ordinary reduction at every v|5. Then there is a F_2 -point, which is close (for the 5-adic topology) to the point and which is not in the image (finite many points) of the F_2 -points of $Y_{\overline{\rho}_2,0}(3) = \{(E,C)\}/\simeq nor$ in the image (finitely many points) of F_2 -points of $Y_{\overline{\rho}_2,\mathrm{split}}(3) = \{(E,\{C,D\})\}/\simeq$.

POTENTIAL AUTOMORPHY

By Langlands-Tunnell, E[3] is modular by (1). It follows from Kisin's MLT (p=3), $\rho_{E,3}$ is modular (see (2)). By Falting's isogeny theorem, E is modular. In particular, $\overline{\rho}_{E,5}$ is modular and therefore, by (3), $\overline{\rho}_2$ is modular. By a generalisation of Taylor's argument in "Artin II", there is a lifting $\rho:G_F\to GL_2(\mathbb{Z}_5)$ of $\overline{\rho}$ such that $\rho|_{G_{F_2}}$ is a lifting of $\overline{\rho}_2$. By Skinner-Wiles (p=5), $\rho|_{G_{F_2}}$ is modular. Since F_2 is a totally real soluble extension of F, by decent, ρ is modular. In which case $\overline{\rho}$ is modular. \square